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Abstract. The vibrational densities of states for a deterministic self-amne aggregate 
and the two-dimensional Eden hulls are computed numenally ty the continued-fraction 
recunion method. It is shown that in contrast with the geometrical complexity the 
density of stales for the diagonally self-affine fractals exhibits a simple power-law scaling. 
Motivated ty these suggestive results, we extend the work done by Alexander and 
Orbach in 1982 and conclude that the concept of fractons is still valid in characterizing 
the vibrational spectra of all diagonally self-affine fractals. We also relate lhe fracton 
dimensionality lo other exponents. 

1. Introduction 
Many recent studies have shown that a wide class of processes leads to complex 
objects which can be described in terms of self-affine fractals [l-31. Examples range 
from plots of various kinds of random walk [ 1,2] to interfaces developing in marginally 
stable, far-from-equilibrium systems [3-51. As far as we know, all the work on self- 
affine fractals concentrates on the geometrical description [&lo]. It is shown that, 
in contrast with the unique fractal dimension of self-similar fractals, one needs in 
general several distinct notions. Most important are the concepts of local dimension 
and global dimension, valid on scales well below and well above, respectively, a 
certain crossover scale [6,7l. For a self-affine fractal with a crassover scale close 
to the smallest length scale in the system, no local fractal dimension exists [3,6,7]. 
On the other hand, all the work in fracton dynamics is concerned with self-similar 
fractals [ll-191. It is shown that the vibrational density of states (VDOS) for self- 
similar fractals scales with frequency as n ( w )  - where d, is called the fracton 
dimensionality [11,12]. So, it is of great value to study the dynamical behaviour of 
self-afine fractals. 

In this paper, we wish to report the first results for the vibrational behaviour 
of self-affine fractals, and in particular we wish to answer the questions of whether 
the concept of fractons is still valid in characterizing the density of states (DOS) of 
diagonally self-affine fractals and how the fracton dimensionality is related to other 
exponents. These questions arise easily when one begins to deal with the dynamics 
of self-affine systems since the concept of fractons is introduced from studies ou 
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self-similar fractals [ l l ,  121. The fracton DOS (i.e. the simple power-law scaling form 
n ( w )  U wd*-*)  in self-affine structures is by no means more obvious than it seems 
to be at first sight. There are two reasons. First, since it needs more than one 
parameter to characterize the geometry of self-affine fractals, it is obvious that the 
physics of self-affine fractals are more complicated than those of self-similar fractals. 
Although much work has been devoted to the vibrational properties of self-similar 
fractals [ll-191, the problem for self-affine structures is still open and it cannot be 
considered to be analogous to that of self-similar fractals without any investigation. 
Second, as we know, the power-law scaling form of the fracton DOS is based upon WO 
assumptions: the vibration is scalar and the structure is self-similar (11,121. Several 
workers [2O-22] have shown that, if the vector nature of the vibration is taken into 
account, the DOS will deviate from the power-law scaling. Therefore it is worthwhile 
to study the results of the replacement of self-similarity by self-affinity. 

In the following section we present the numerical results of the moss for two 
typical self-affine fractals and in  section 3 we give an analytical argument. A discussion 
is presented in section 4 and this paper is closed with a summary in section 5. 

2. Numerical results 

We consider the vibration on diagonally self-affine networks whose structures are 
invariant under dilation transformation only if the lengths are rescaled by direction- 
dependent factors. Our results will apply to frequencies such that the associated 
distances are much larger than the size of the individual bonds making up the network, 
but much smaller than the total size of the network The first self-affine fractal studied 
here is a two-dimensional deterministic aggregate [U] shown in figure 1. It can be 
grown by an iterative method. First, a seed particle is centred at the origin, and then 
one adds six particles to the seed to construct the cluster in the second iteration. At 
the nth iteration, the (n - 1)th aggregate is taken to be a unit, and six such units 
are added to the (n - 1)th aggregate: two in directions iz, and one in directions 
&y. The self-affine structure is produced in the n -+ cc limit. Since the width of the 
structure grows with n as 3” while its length increases as 5”, the global dimension of 
this aggregate equals unity (here we use box dimensions). This self-affine fractal has 
a lower cut-off length which is the size of the particle that it is made of; therefore, it 
has no local dimension [3]. 
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Figure 1. A two-dimensional deterministic self-aRine aggregate. 

The elastic lattice Hamiltonian takes the form of the scalar [24] Born model [25]: 

” 

where U is the scalar displacement and the summation is over all nearest-neighbour 
(NN) particles. Tb compute the nos,  we adopt the widely used recursion method of 
Haydock er al [26] (see also [U]) which offers fast computational speed and, above 
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all, reliability. We choose an initial vector with all elements as random variables 
chosen from a Gaussian distribution [21]. Here ten initial vectors have been averaged 
to obtain the global VDOS and the length of the continued fraction is set to L,  
= 100. Figure 2 shows the inregrared VDOS N ( w )  = s," n(w') dw' for the self- 
affine aggregate of figure 1 with cluster size N = 16807(= 75). The integrated 
VDOS at lower frequencies follows a power law N ( w )  - wd, down to a finite-size- 
induced frequency wmin. Since the system is not fractal on length scales shorter than 
the lattice spacing (we take it to be unity), N ( w )  does not keep its form above 
w Y 2n. The value of d ,  is obtained by fitting a least-squares line over the range 
from logl, w = -1.1 to log,, w = 0.30, and d,  = 1.19 & 0.02 

Figure 2. Log-log dependence of  the integrated VDOS on the 
frequenq for h e  self-affrne aggregate shown in figure 1. The 
fracton dimensionality is obtained by fitting a least-squares line 

........... ." 

-4.0 -38 -20 4.8 lamw between the two points indicated ty arrows. 

The second self-affine fractals are the rough surfaces of the Eden clusters. We 
first grew the two-dimensional Eden clusters in the strip geometry using version C of 
Jullien and Botet 1281. After a sufficiently long growth 'time', the surfaces will become 
stationary, i.e. independent of the height ('time') of the surfaces 1291. At this time 
the rough surfaces are statistically self-affine [3]. We then determined the external 
'hull' [30] of the Eden clusters. A typical hull is shown in figure 3. The last step is 
to compute the vDOSS of the Eden hulls using the fraction recursion method [26,27l 
mentioned above with a periodic boundary condition along the substrate. Figure 4 
shows the log-log plot of the integrated woss versus frequency for the Eden hulls 
at the stationary stage (numerically, for height H > 4OL, where L is the length of 
the substrate). Each result is an average over 100 configurations. The data set are 
shifted vertically for clarity of display. It is shown from the lag-log linearity that 
the integrated VDOSS scale with frequency as a power law N ( w )  - wds. Fitting a 
least-square line over the range from log,, w = -0.4 to log,, w = 0.1 we obtain 
that d, is around 1.55 f 0.08, independent of the growth time when the surface is 
geometrically stationary (we found that the growth dynamics come into the vibrational 
properties only at the early growth 'time'). The uncertainty in ds is fairly large since 
the strip length L is not large and the computer time prevents us from growing 
clusters using a larger L. 

Figum 3. A typical hull of the two-dimensional Eden model in a strip geometry. 

The above numerical results indicate that the vibrational s ectra for the two self- 
where the fracton affine fractals are characterized by the fracton DOS n ( w )  - 
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dimensionalities d, take non-trivial values. 

3. Analytical argument 
Motivated by the numerical results, we further wish to know whether the fracton DOS 
for self-affine fractals is generally valid and how the fracton dimensionality is related 
to other exponents. The following argument is a straightfomrd extension OP the 
work of Alexander and Orbach [Ill who first proposed the concept of fractons. The 
power-law behaviour of the VDOS can be obtained using a Green function technique. 
The DOS for the vibration problem can be mapped onto the DOS for the diffusion 
problem which can be obtained from the single-site Green function: 
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n(w) = - ( I / T )  Im(Fo(-c +io+))  (2) 

where n ( w )  is the VDOS and Po(€)  is the Laplace transformation of Po(t), the 
autocorrelation function, with E the spectral parameter. On self-atfine fractals, one 
expects, in general, anomalous diffusion along different directions: 

(r:(t))  - lZ/(ate~) 1.1 = 1,2,. . . ,d. (3) 

The total volume on the diagonally self-affine fractal within the diffusion distance is 
generally [U] 

where { D,,} are the characteristic exponents governing the mass-length scaling. Thus, 

Then the VDOS exhibits a power-law scaling 

.(W) - wds-1  (7) 

where d, is called the fracton dimensionality. 

4. Discussion 
For self-affine fractals the quantities 2 0 , / ( 2  + e,) in equation (6) are, in general, 
different for different 1.1. However, here we cite an example for which these quantities 
are the same for different 1.1. It is one of the single-valued self-affine curves MH with 
the Holder exponent H = f [3,6]. This curve is a deterministic version of a Brownian 
plot and was first invented by Mandelbrot [6]. It can be constructed iteratively. 
Figure 5 shows its first three generations (for construction, see 131). In the kth stage 
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Figure 4. Log-log plol of the inlegrated VDMS 

versus frequency for the Eden hulls at the stationary 
growlh stage for a slrip width L = 196 and various 
gmwlh heights: data a, H = 4OL; data b, H = 
SOL; data e, H = 60L data d, H = 70L. 

Figure 5. The first lhree generations of a selCamne 
CUN~. 

we obtain M g ) .  If IC is finite, the cuwe will be composed of many bonds. Such 
bonds are assumed to connect pairs of particles which vibrate with the Hamiltonian 
in cquation (1). It is easy to calculate the exponents D, and Bp(p = 1,2) for 
this curve. If one scales the lengths in the 2 direction by a factor of 4 and in the 
y direction by a factor of 2, we shall find that the number of bonds (or particles) 
increases four times. Therefore, D ,  = (In 4)/(ln 4) = 1 and D, = (In 4 ) / ( ln  2) = 
2. Topologically, the curve is equivalent to a line. When a particle travels a distance 
1 - \/i along the self-affine line, it will travel a Euclidean distance with components 
x - 1 - a, y - Ji - t 1 f 4 .  From (3) we have 0, = 0, 0, = 2. Therefore, 
2 0 , / ( 2  + e,)  = 2 0 , / ( 2  + e,) = 1, and from (6) we have d, = 1. 

It can be demonstrated that d, = 1 is correct if it is noted that the Hamiltonian 
in equation (1) (and therefore the vibrational properties) for this self-affine curve is 
the same as that of a line! 

Our second example in section 2 is the Eden hull whose d, is found to be about 
1.55. At first sight, one may wonder why its fracton dimensionality d, is not equal to 
unity as in the case in figure 5. This is because the Eden hulls are not topologically 
equivalent to a line. The environment of each particle in the Eden hulls is different 
from that in a line and this difference cannot be smeared out in the asymptotic 
regime. Tbpologically one can extract a line from the Eden hull and the particles 
can be classified into two types: particles on the ‘line’ and particles not on the ‘line’. 
Suppose that there are NI and N ,  of these two types of particle, respectively, in the 
asymptotic regime N = N ,  + N ,  - CO; it is most probable that N , / N  and N , / N  
approach two non-zero constants. For the Eden hulls grown from a finite substrate 
with length L = 196, we have estimated that N , / N  is of the order of 10% and we 
conjecture that this value is also valid in the N 3 CO limit. It is this non-zero N , / N  
fraction of particles that leads to a d,-value somewhat larger than unity. 

Generally, the exponent d, in (6) may take a non-trivial value, i.e. different from 
the value of the Euclidean dimensions. From (6) and (7) one can conclude that the 
concept of fracton dimensionality is generally valid in characterizing the VDOS for 
diagonally self-affine fractals. 
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5. Summary 
We have shown numerically that the moss for a deterministic self-alline aggre- 
gate and the two-dimensional Eden hulls are characterized by a simple power-law 
behaviour although their geometry is different from self-similarity and the fracton 
dimensionalities are found to have non-trivial values. The numerical results indicate 
that fractons exist in the self-affine fractals that we studied and shed light on the 
dynamical behaviours of other self-affine fractals. A straightforward extension of the 
work of Alexander and Orbach confirms our numerical findings and relates the frac- 
ton dimensionality to other exponents. It is interesting to investigate the vibrational 
properties of non-diagonally self-affine fractals. 
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